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Abstract

We present an ordinary differential equation mathematical model for
the spread of malaria in human and mosquito populations. Susceptible
humans get infected at a certain probability when they contact infec-
tious mosquitoes. They then progress through the exposed, infectious
and recovered classes, before reentering the susceptible class. Suscepti-
ble mosquitoes get infected at a certain probability when they contact
infectious or recovered humans and then move through the exposed and
infectious classes. Both species follow a logistic model for their population
growth, with humans having additional immigration and disease-induced
death. For this epidemic model, we define a reproductive number, R0,
for the number of secondary cases that one infected individual will cause
through the duration of the infectious period. We find the disease-free
equilibrium is locally asymptotically stable when R0 < 1 and unstable
when R0 > 1. We prove the existence of at least one endemic equilibrium
point for all R0 > 1. In the absence of disease-induced death, we prove
the transcritical bifurcation at R0 = 1 is supercritical (forward). Numeri-
cal simulations suggest that for larger values of the disease-induced death
rate, a subcritical (backward) bifurcation is possible at R0 = 1.

1 Introduction

Malaria is an infectious disease caused by a parasite (Plasmodium) and trans-
mitted between humans by the bites of mosquitoes (female Anopheles). Malaria
kills about 700, 000 – 2.7 million people a year, 75% of which are African chil-
dren. An estimated 40% of the world’s population live in malaria endemic
areas. Evidence of malaria-like diseases dates back in written history to at least
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2700 BC. The incidence of malaria has been growing due to increasing parasite
drug-resistance and mosquito insecticide-resistance.

Mathematical modeling of malaria began in 1911 with Ross’ model [23] and
major extensions are described in MacDonald’s 1957 book [18]. The first mod-
els were two-dimensional with one variable representing humans and the other
representing mosquitoes. An important addition to the malaria models was the
inclusion of acquired immunity proposed by Dietz, Molineaux and Thomas [9].
Further work on acquired immunity in malaria has been conducted by Aron
[2] and Bailey [5]. Anderson and May [1], Aron and May [3], Koella [13] and
Nedelman [19] have written some good reviews on the mathematical modeling
of malaria. . Some recent papers have also included environmental effects [17],
[25] and [26]; the spread of resistance to drugs [4] and [14]; and the evolution of
immunity [15].

Recently, Ngwa and Shu [21] and [20] proposed an ordinary differential equa-
tion (ODE) compartmental model for the spread of malaria with a Susceptible-
Exposed-Infectious-Recovered-Susceptible (SEIRS) pattern for humans and a
Susceptible-Exposed-Infectious (SEI) pattern for mosquitoes. In this paper, we
extend and analyze this model that describes the transmission of malaria (Fig-
ure 1.1).

The model divides the human population into 4 classes: susceptible, exposed,
infectious and recovered (immune). People enter the susceptible class, either
through birth (at a constant per capita rate) or through migration (at a constant
rate). When an infectious mosquito bites a susceptible human, there is some
finite probability that the parasite (in the form of sporozoites) will be passed
on to the human and the person will move to the exposed class. The parasite
then travels to the liver where it develops into its next life stage. After a certain
period of time, the parasite (in the form of merozoites) enters the blood stream,
usually signaling the clinical onset of malaria. In our model, people from the
exposed class enter the infectious class at a rate that is the reciprocal of the
duration of the latent period. After some time, the infectious humans recover
and move to the recovered class. The recovered humans have some immunity
to the disease and do not get clinically ill, but they still harbour low levels of
parasite in their blood stream and can pass the infection to mosquitoes. After
some period of time, they lose their immunity and return to the susceptible class.
Humans leave the population through a density-dependent per capita outward
migration and natural death rate, and through a per capita disease-induced
death rate.

Female mosquitoes (we do not include male mosquitoes in our model because
only female mosquitoes bite animals for blood meals) enter the susceptible class
through birth. The parasite (in the form of gametocytes) enters the mosquito,
with some probability, when the mosquito bites an infectious human or a re-
covered human (the probability of transmission of infection from a recovered
human is much lower than that from an infectious human); and the mosquito
moves from the susceptible to the exposed class. After some period of time, de-
pendent on the ambient temperature and humidity, the parasite develops into
sporozoites and enters the mosquito’s salivary glands; and the mosquito moves
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Figure 1.1: A schematic of the mathematical model for malaria transmission.
Susceptible humans, Sh, get infected at a certain probability when they contact
infectious mosquitoes. They then progress through the exposed, Eh, infectious,
Ih, and recovered, Rh, classes, before reentering the susceptible class. Suscep-
tible mosquitoes, Sv, get infected at a certain probability when they contact
infectious or recovered humans and then move through the exposed, Ev, and
infectious, Iv, classes. Both species follow a logistic model for their population
growth, with humans having additional immigration and disease-induced death.
Birth, death and migration into and out of the population are not shown in the
figure.

from the exposed class to the infectious class. The mosquito remains infectious
for life. Mosquitoes leave the population through a per capita density-dependent
natural death rate.

The main differences in our model, from that of Ngwa and Shu [21], is
that we have included human immigration and have excluded direct human
recovery from the infectious to the susceptible class, bypassing the recovered
stage. Human movement is present throughout the world and plays a large
role in the epidemiology of diseases, including malaria. In many parts of the
developing world, there is rapid urbanization as many people leave rural areas
and migrate to cities in search of employment. We include this movement as an
inward migration rate into the susceptible class. We do not include immigration
of “diseased” individuals as we believe that most people who are sick will not
travel. We also exclude the movement of exposed people because, given the
short time of the exposed stage, the number of exposed people is small. We
also exclude direct infectious-to-susceptible recovery that the model of Ngwa
and Shu [21] contains. We believe that this is a valid simplifying assumption
because most people show some period of immunity before becoming susceptible
again. As our model includes an exponential distribution of movement from the
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recovered to the susceptible class, it will include the quick return to susceptibility
of some individuals. Our model is not a generalization of that of Ngwa and Shu
[21]; nor is it a special case of that model.

We first describe the mathematical model including the definition of a do-
main where the model is mathematically and epidemiologically well-posed. Next,
we prove the existence and stability of the disease-free equilibrium points, define
the reproductive number and describe the existence and stability of the endemic
equilibrium point(s).

2 Malaria Model

The equations for the malaria model are shown in (2.1):

dSh

dt
= Λh + ψhNh + ρhRh − λhSh − fh(Nh)Sh (2.1a)

dEh

dt
= λhSh − νhEh − fh(Nh)Eh (2.1b)

dIh

dt
= νhEh − γhIh − fh(Nh)Ih − δhIh (2.1c)

dRh

dt
= γhIh − ρhRh − fh(Nh)Rh (2.1d)

dSv

dt
= ψvNv − λvSv − fv(Nv)Sv (2.1e)

dEv

dt
= λvSv − νvEv − fv(Nv)Ev (2.1f)

dIv

dt
= νvEv − fv(Nv)Iv (2.1g)

with Nh = Sh + Eh + Ih + Rh and Nv = Sv + Ev + Iv with

dNh

dt
= Λh + ψhNh − fh(Nh)Nh − δhIh (2.2a)

dNv

dt
= ψvNv − fv(Nv)Nv (2.2b)

and infection rates,

λh =
βhvσvhIv

Nh
(2.3a)

λv =
βvhσvhIh

Nh
+

β̃vhσvhRh

Nh
. (2.3b)

The state variables of the model are shown in Table 2.1 and the parameters
used in the model are shown in Table 2.2. All parameters are assumed to be
strictly positive with the exception of the disease-induced death rate, δh, which
we assume to be nonnegative.
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Table 2.1: The state variables for the malaria model (2.1).

Sh: The number of susceptible humans.
Eh: The number of exposed humans.
Ih: The number of infectious humans.
Rh: The number of recovered (immune and asymptomatic, but slightly

infectious) humans.
Sv: The number of susceptible mosquitoes.
Ev: The number of exposed mosquitoes.
Iv: The number of infectious mosquitoes.
Nh: The total human population.
Nv: The total mosquito population.

Table 2.2: The parameters for the malaria model (2.1).

Λh: The immigration rate of humans. Dimensions: Humans ×
Time−1.

ψh: The per capita birth rate of humans. Dimensions: Time−1.
ψv: The per capita birth rate of mosquitoes. Dimensions: Time−1.
σvh: The number of bites on humans per mosquito per unit time. Di-

mensions: Time−1.
βhv: The probability of transmission of infection from an infectious

mosquito to a susceptible human given that a contact between
the two occurs. Dimensions: 1.

βvh: The probability of transmission of infection from an infectious
human to a susceptible mosquito given that a contact between
the two occurs. Dimensions: 1.

β̃vh: The probability of transmission of infection from a recovered
(asymptomatic carrier) human to a susceptible mosquito given
that a contact between the two occurs. Dimensions: 1.

νh: The per capita rate of progression of humans from the exposed
state to the infectious state. 1/νh is the average duration of the
latent period. Dimensions: Time−1.

νv: The per capita rate of progression of mosquitoes from the exposed
state to the infectious state. 1/νv is the average duration of the
latent period. Dimensions: Time−1.

γh: The per capita recovery rate for humans from the infectious state
to the recovered state. 1/γh is the average duration of the infec-
tious period. Dimensions: Time−1.

δh: The per capita disease-induced death rate for humans. Dimen-
sions: Time−1.

ρh: The per capita rate of loss of immunity for humans. 1/ρh is the
average duration of the immune period. Dimensions: Time−1.

fh(Nh): = µ1h + µ2hNh. The per capita density-dependent death and
emigration rate for humans. Dimensions: Time−1.
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fv(Nv): = µ1v + µ2vNv. The per capita density-dependent death rate for
mosquitoes. Dimensions: Time−1.

µ1h: The density independent part of the death (and emigration) rate
for humans. Dimensions: Time−1.

µ2h: The density dependent part of the death (and emigration) rate
for humans. Dimensions: Humans−1 × Time−1.

µ1v: The density independent part of the death rate for mosquitoes.
Dimensions: Time−1.

µ2v: The density dependent part of the death rate for mosquitoes. Di-
mensions: Mosquitoes−1 × Time−1.

To analyze the malaria model (2.1) more easily, we work with fractional
quantities instead of actual populations by scaling the population of each class
by the total species population. We let:

eh =
Eh

Nh
and ih =

Ih

Nh
and rh =

Rh

Nh
(2.4)

with
Sh = shNh = (1− eh − ih − rh)Nh (2.5)

and
ev =

Ev

Nv
and iv =

Iv

Nv
(2.6)

with
Sv = svNv = (1− ev − iv)Nv. (2.7)

Differentiation of the scaling equations (2.4) and (2.6) gives us

dEh

dt
=

deh

dt
Nh + eh

dNh

dt
(2.8)

and
dEv

dt
=

dev

dt
Nv + ev

dNv

dt
(2.9)

and so on for the rest of the variables.
Solving for the derivatives of the scaled variables we obtain

deh

dt
=

1
Nh

[
dEh

dt
− eh

dNh

dt

]
(2.10)

and
dev

dt
=

1
Nv

[
dEv

dt
− ev

dNv

dt

]
(2.11)

and so on for the other variables.
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This creates a new 7-dimensional system of equations with two dimensions
for the two total population variables and five dimensions for the fractional
population variables with disease:

deh

dt
= σvhβhv

Nv

Nh
iv (1− eh − ih − rh)− (2.12a)

(
νh + ψh +

Λh

Nh

)
eh + δhiheh

dih
dt

= νheh −
(

γh + δh + ψh +
Λh

Nh

)
ih + δhi2h (2.12b)

drh

dt
= γhih −

(
ρh + ψh +

Λh

Nh

)
rh + δhihrh (2.12c)

dNh

dt
= Λh + ψhNh − (µ1h + µ2hNh)Nh − δhihNh (2.12d)

dev

dt
= σvh

(
βvhih + β̃vhrh

)
(1− ev − iv)− (νv + ψv)ev (2.12e)

div
dt

= νvev − ψviv (2.12f)

dNv

dt
= ψvNv − (µ1v + µ2vNv)Nv (2.12g)

Note that ev and iv do not have any meaning when Nv = 0.
For this model (2.12), there exists a a domain where the system of equations

is epidemiologically and mathematically well-posed. We define this domain, D,
as:

D =








eh

ih
rh

Nh

ev

iv
Nv




∈ R7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eh ≥ 0,
ih ≥ 0,
rh ≥ 0,

eh + ih + rh ≤ 1,
Nh ≥ M > 0,

ev ≥ 0,
iv ≥ 0,

ev + iv ≤ 1,
Nv ≥ 0





(2.13)

for some positive M that depends on the parameter values. This domain, D,
is valid epidemiologically as the fractionally populations, eh, ih, rh, ev and iv
are all nonnegative and have sums over their species type that are less than or
equal to 1. The human and mosquito populations, Nh and Nv, are positive and
nonnegative, respectively. We require an artificial positive lower bound, M , on
the human population because e′h, i′h and r′h are not defined at Nh = 0.

Theorem 2.1 Assuming that the initial conditions lie in D, the system of equa-
tions for the malaria model (2.12) has a unique solution that exists and remains
in D for all time t ≥ 0.
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Proof The right hand side of the system of equations (2.12) is continuous with
continuous partial derivatives in D. It remains to show that D is forward-
invariant. It is clear from (2.12) that if eh = 0, then e′h ≥ 0; if ih = 0, then
i′h ≥ 0; if rh = 0, then r′h ≥ 0; if ev = 0, then e′v ≥ 0; and if iv = 0, then i′v ≥ 0.
It is also true that if eh + ih + rh = 1 then e′h + i′h + r′h < 1; and if ev + iv = 1
then e′v + i′v < 1. Finally, we note that if Nv = 0, then N ′

v = 0; and if Nh = M ,
then

N ′
h = Λh + ψhM − µ1hM − µ2hM2 − δhihM

> Λh + ψhM − µ1hM − µ2hM2 − δhM.

Thus, N ′
h > 0 for some M small enough, provided that Λh > 0. If Λh = 0,

then we require ψh > (µ1h + δh) (with a different appropriate M small enough).
However, in this paper, we will only consider the case with Λh > 0. Thus, none
of the orbits can leave D and a unique solution exists for all time. ¤

3 Disease-Free Equilibrium Points and Repro-
ductive Number

3.1 Existence of Disease-Free Equilibrium Points

We first look at equilibrium points where there is no disease. We define the
“diseased” classes as the human or mosquito populations that are either exposed,
infectious or recovered; that is, eh, ih, rh, ev and iv.

Theorem 3.1 There are exactly two equilibrium points of the malaria model
(2.12) on the intersection of D and the boundary of the positive cone in R7

(which we denote by ∂R7). One equilibrium point contains only humans without
disease (and no mosquitoes) and we label that as the mosquito-free equilibrium,
xmfe:

xmfe =

(
0, 0, 0,

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h
, 0, 0, 0

)
. (3.1)

The second point contains humans and mosquitoes but no disease, which we label
as the disease-free equilibrium, xdfe:

xdfe =

(
0, 0, 0,

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h
, 0, 0,

ψv − µ1v

µ2v

)
. (3.2)

Proof We need to show that xmfe and xdfe are equilibrium points of (2.12);
and that there are no other equilibrium points on D ∩ ∂R7. The first can be
seen by substituting the equilibrium points, (3.1) and (3.2), into the system of
equations (2.12).

We still need to show that there are no other equilibrium points on D∩∂R7.
Lemma A.1 states that on D ∩ ∂R7, eh = ih = rh = ev = iv = 0. For ih = 0,
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the only equilibrium point for Nh from (2.12d) is
Nh = ((ψh−µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh)/(2µ2h); and the only two equilib-

rium points for Nv from (2.12g) are Nv = 0 and Nv = (ψv − µ1v)/µ2v. Thus,
the only two equilibrium points on D ∩ ∂R7 are xmfe and xdfe. ¤

For ease of notation, we label the positive equilibrium human and mosquito
population values (in the absence of disease) by N∗

h and N∗
v , respectively.

N∗
h =

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h
(3.3a)

N∗
v =

ψv − µ1v

µ2v
(3.3b)

3.2 Reproductive Number

We use the next generation operator approach, as described by Diekmann et
al. in [8] to define the reproductive number, R0, as the number of secondary
infections that one infectious individual would create over the duration of the
infectious period provided that everyone else is susceptible. We define the next
generation operator, K, which provides the number of secondary infections in
humans and mosquitoes caused by one generation of infectious humans and
mosquitoes, as

K =
(

0 Khv

Kvh 0

)
(3.4)

where
Khv: The number of humans that one mosquito infects through its infec-

tious lifetime, assuming all humans are susceptible.
Kvh: The number of mosquitoes that one human infects through the dura-

tion of the infectious period, assuming all mosquitoes are susceptible.

Using the ideas of Hyman and Li [12], we define Khv and Kvh as a product
of the probability of surviving till the infectious state, the number of contacts
per unit time, the probability of transmission per contact and the duration of
the infectious period:

Khv =
νv

νv + µ1v + µ2vN∗
v

· σvh · βhv · 1
µ1v + µ2vN∗

v

(3.5a)

Kvh =
νh

νh + µ1h + µ2hN∗
h

· σvhN∗
v

N∗
h

· βvh · 1
γh + δh + µ1h + µ2hN∗

h

(3.5b)

+
νh

νh + µ1h + µ2hN∗
h

· γh

γh + δh + µ1h + µ2hN∗
h

·σvhN∗
v

N∗
h

· β̃vh · 1
ρh + µ1h + µ2hN∗

h

.

In (3.5a), νv/(νv + µ1v + µ2vN∗
v ) is the probability that a mosquito will survive
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the exposed state to become infectious1; σvh is the number of contacts that one
mosquito has with humans per unit time; βhv is the probability of transmission
of infection from an infectious mosquito to a susceptible human; and 1/(µ1v +
µ2vN∗

v ) is the average duration of the infectious lifetime of the mosquito. In
(3.5b), the total number of mosquitoes infected by one human is the sum of the
new infections from the infectious and the recovered states. In the first term
of Kvh, νh/(νh + µ1h + µ2hN∗

h) is the probability that a human will survive
the exposed state to become infectious; σvh(N∗

v /N∗
h) is the number of contacts

that one human has with mosquitoes per unit time; βvh is the probability of
transmission of infection from an infectious human to a susceptible mosquito;
and 1/(γh + δh + µ1h + µ2hN∗

h) is the average duration of the infectious period
of a human. In the second term, νh/(νh + µ1h + µ2hN∗

h) is the probability that
a human will survive the exposed state to become infectious; γh/(γh + δh +
µ1h + µ2hN∗

h) is the probability that the human will then survive the infectious
state to move to the recovered state; σvh(N∗

v /N∗
h) is the number of contacts

that one human has with mosquitoes per unit time; β̃vh is the probability of
transmission of infection from a recovered human to a susceptible mosquito;
and 1/(ρh + µ1h + µ2hN∗

h) is the average duration of the recovered period of a
human.

We let R0 be the spectral radius of the next generation operator, i.e.,

R2
0 = KvhKhv.

Then, R2
0 is the number of humans that one infectious human will infect, through

a generation of infections in mosquitoes, assuming that previously all other
humans and mosquitoes were susceptible.

Definition We define the reproductive number, R0, as

R0 =
√

KvhKhv (3.6)

where Kvh and Khv are defined in (3.5).

3.3 Stability of Disease-Free Equilibrium Points

We conduct linear stability on the two equilibrium points without disease: (3.1)
and (3.2). The Jacobian of the malaria model (2.12) has the form (3.7):

J =




J11 J12 J13 J14 0 J16 J17

J21 J22 0 J24 0 0 0
0 J32 J33 J34 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 J56 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77




(3.7)

1In defining time periods and probabilities for R0, we use the original system of equations
(2.1) and not the scaled equations (2.12). As the two models are equivalent, the reproductive
number is the same with either definition: µ1h + µ2hN∗

h is equivalent to ψh + Λh/N∗
h and

µ1v + µ2vN∗
v is equivalent to ψv.
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with

J11 = −σvhβhvNviv/Nh − (νh + ψh + Λh/Nh) + δhih (3.8a)
J12 = −σvhβhvNviv/Nh + δheh (3.8b)
J13 = −σvhβhvNviv/Nh (3.8c)
J14 = −(σvhβhvNviv/N2

h)(1− eh − ih − rh) + Λheh/N2
h (3.8d)

J16 = (σvhβhvNv/Nh)(1− eh − ih − rh) (3.8e)
J17 = (σvhβhviv/Nh)(1− eh − ih − rh) (3.8f)
J21 = νh (3.8g)
J22 = −(γh + δh + ψh + Λh/Nh) + 2δhih (3.8h)
J24 = Λhih/N2

h (3.8i)
J32 = γh + δhrh (3.8j)
J33 = −(ρh + ψh + Λh/Nh) + δhih (3.8k)
J34 = Λhrh/N2

h (3.8l)
J42 = −δhNh (3.8m)
J44 = ψh − µ1h − 2µ2hNh − δhih (3.8n)
J52 = σvhβvh(1− ev − iv) (3.8o)
J53 = σvhβ̃vh(1− ev − iv) (3.8p)
J55 = −σvh(βvhih + β̃vhrh)− (νv + ψv) (3.8q)
J56 = −σvh(βvhih + β̃vhrh) (3.8r)
J65 = νv (3.8s)
J66 = −ψv (3.8t)
J77 = ψv − µ1v − 2µ2vNv (3.8u)

Theorem 3.2 The mosquito-free equilibrium point, xmfe (3.1), is locally asymp-
totically stable if ψv < µ1v and unstable if ψv > µ1v.

Proof The Jacobian evaluated at xmfe (3.1) is a lower triangular matrix of the
form

J =




J11 0 0 0 0 0 0
J21 J22 0 0 0 0 0
0 J32 J33 0 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 0 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77




. (3.9)
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The eigenvalues, simply the diagonal entries of the Jacobian, are:

η1 = −(νh + ψh + Λh/N∗
h) (3.10a)

η2 = −(γh + δh + ψh + Λh/N∗
h) (3.10b)

η3 = −(ρh + ψh + Λh/N∗
h) (3.10c)

η4 = ψh − µ1h − 2µ2hN∗
h (3.10d)

= −
√

(ψh − µ1h)2 + 4µ2hΛh

η5 = −(νv + ψv) (3.10e)
η6 = −ψv (3.10f)
η7 = ψv − µ1v (3.10g)

We see that all eigenvalues are negative for ψv < µ1v and one eigenvalue, η7, is
positive for ψv > µ1v. ¤

The mosquito free equilibrium point is thus locally asymptotically stable if
the mosquito death rate is greater than the mosquito birth rate and unstable if
the mosquito birth rate is greater than the mosquito death rate.

Theorem 3.3 The disease-free equilibrium point, xdfe (3.2), is locally asymp-
totically stable if R0 < 1 and ψv > µ1v; and is unstable if either R0 > 1 or
ψv < µ1v.

A full proof of this theorem can be found in Appendix A.1. It consists of
evaluating the Jacobian, to find one eigenvalue that is always negative and one
eigenvalue equal to −(ψv−µ1v), and using Descartes’ Rule of Sign to show that
all the remaining 5 eigenvalues are negative when R0 < 1 and one of them is
positive when R0 > 1.

4 Endemic Equilibrium Points

Endemic equilibrium points are steady states where the disease persists in the
population (all state variables are positive). The complexity of the system of
equations (2.12) has prevented us from finding an explicit representation of the
endemic equilibrium point(s). We use general bifurcation theorems to show the
existence of at least 1 equilibrium point for all R0 > 1. We are able to show that
the transcritical bifurcation at R0 = 1 is supercritical when δh = 0 (there is no
disease-induced death). However, numerical results show that the bifurcation
can be subcritical for some positive values of δh, giving rise to endemic equilibria
for R0 < 1.

We first rewrite the equilibrium equations for (2.12) in the form of a nonlinear
eigenvalue problem:

u = G(ζ, u)
= ζLu + h(ζ, u) (4.1)
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where u ∈ Y = R2, a real Banach space with Euclidean norm, ‖ · ‖; ζ ∈ R
is the bifurcation parameter; L is a compact linear map on Y ; and h(ζ, u) is
O(‖u‖2) uniformly on bounded ζ intervals. We take the equilibrium equations
(the right hand side of (2.12)), reduce the dimension through some algebraic
manipulations, and rewrite them in the form of (4.1) with

u =
(

eh

ev

)

where eh and ev are equilibrium values. We use ζ = σvh for the bifurcation
parameter. We also define Ω = {R× Y } so that the pair (ζ, u) ∈ Ω.

A theorem by Rabinowitz [22] (Thm 1.3) states that if ζ0 is a characteristic
value (reciprocal of an eigenvalue) of L of odd multiplicity, then there exists a
nontrivial continuum of solution pairs, (ζ, u) of (4.1) that intersects the trivial
solution (that is, (ζ, 0) for any ζ) at (ζ0, 0) and continues to either infinity (is
unbounded in Ω) or to (ζ̂0, 0) where ζ̂0 is also a characteristic value of L of odd
multiplicity.

We use this theorem to show that there exists a continuum of solution pairs
(ζ, u) ∈ Ω for the eigenvalue equation (4.1). To each of these solution-pairs,
there corresponds an equilibrium-pair (ζ, x∗) of the malaria model (2.12), where
ζ is a parameter value and x∗ ∈ R7 is an equilibrium point of the malaria model
(2.12). We define the equilibrium-pair, (ζ, x∗), as the collection of a parameter
value, ζ, and the corresponding equilibrium point, x∗, for that parameter value.

Theorem 4.1 Assuming that the mosquito birth rate is greater than the mosquito
death rate (ψv > µ1v), the malaria model (2.12) has a continuum of equilibrium-
pairs, (ζ, x∗), that connects the point (ξ1, xdfe) to infinity (specifically is un-
bounded for ζ ∈ R but is bounded for x∗ ∈ R7) in the positive cone of R7. The
number ξ1 = 1/

√
AB where A and B are defined in the Appendix (A.25).

We give a proof of this theorem in Appendix A.2.

Theorem 4.2 Assume ψv > µ1v. The bifurcation point at ζ = ξ1 corresponds
to R0 = 1. For the set of ζ for which there exists an equilibrium-pair (ζ, x∗),
the corresponding set of values for R0 includes, but is not necessarily equal to,
(1,∞). Thus, there exists at least 1 endemic equilibrium point of the malaria
model (2.12) for all R0 > 1.

Proof As ζ = σvh, some algebraic manipulations of R0 (3.6) produces

R0 = ζ
√

AB. (4.2)

Thus, R0 is linearly related to ζ; and when ζ = ξ1, R0 = 1. As the continuum of
equilibrium-pairs connects (ξ1, xdfe) to infinity and is bounded in R7, it exists
for all ζ > ξ1, and thus an endemic equilibrium exists for all R0 > 1. Note that
it is possible, though not necessary, for the continuum of equilibrium-pairs to
include values of ζ < ξ1 (R0 < 1). ¤
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Typically in epidemiological models, bifurcations at R0 = 1 tend to be su-
percritical (i.e., positive endemic equilibria exist for R0 > 1 near the bifurcation
point). It turns out that in this model, (2.12), a supercritical (forward) bifur-
cation does not necessarily occur at R0 = 1. We can show, however, that in
the absence of disease induced death (δh = 0), the bifurcation is supercritical
(forward).

We determine the direction of the bifurcation using the Lyapunov-Schmidt
method as described by Cushing (1998) [7]. We begin by expanding the terms
of the nonlinear eigenvalue equation (4.1) about the bifurcation point, (ξ1, 0).
The expanded variables are

u = 0 + εu(1) + ε2u(2) + . . . (4.3a)
ζ = ξ1 + εζ1 + ε2ζ2 + . . . (4.3b)
L = L (4.3c)

h(ζ, u) = h(ξ1 + εζ1 + ε2ζ2 + . . . , εu(1) + ε2u(2) + . . .) (4.3d)
= ε2h2(ξ1, u

(1)) + . . .

We substitute the expansions (4.3) into the eigenvalue equation (4.1) and eval-
uate at different orders of ε.

Theorem 4.3 Assuming ψv > µ1v, in the absence of disease-induced death
(δh = 0), the bifurcation at R0 = 1 is supercritical (forward).

The proof involves substitutions of the expansions (4.3) into the eigenvalue
equation (4.1) up to second order in ε and an application of the Fredholm
Alternative. Details of this proof are in Appendix A.3.

For positive values of δh, it is possible for this model to exhibit a subcritical
bifurcation (sometimes called a “backward” bifurcation) in which case, near the
bifurcation point, positive endemic equilibria exist for R0 < 1. Other examples
of epidemiological models with subcritical (backward) bifurcations at R0 = 1
include those described by Castillo-Chavez and Song [6], Gómez-Acevedo and
Yi [11] and van den Driessche and Watmough [24].

Although we cannot prove the existence of a subcritical (backward) bifurca-
tion, we show through numerical examples that it is possible for some positive
values of δh. This is important because it implies that there can be a stable
endemic equilibrium even if R0 is less than 1.

We first use the bifurcation software program AUTO [10] to create bifur-
cation diagrams around R0 = 1. We show two examples of these bifurcation
diagrams in Figure 4.1. One has all parameter values as described in Table 4.1
except for the bifurcation parameter, σvh, which is varied as shown in the fig-
ure. The other curve has parameter values described in Table 4.1, except for
δh = 3.41938× 10−5 and the bifurcation parameter, σvh, which is also varied as
shown in the figure.

For the curve with δh = 3.45392 × 10−4, we can see both unstable and
stable endemic equilibrium points. There is a subcritical (backward) bifurcation
at σvh = 0.5779 (R0 = 1); and a saddle-node bifurcation at σvh = 0.5515

14



0.54 0.56 0.58 0.6 0.62 0.64 0.66
0

0.01

0.02

0.03

Bifurcation diagram showing endemic equilibrium points for two values of δ
h

δ
h
 =3.45392e−4

δ
h
 =3.41938e−5

Bifurcation Parameter: σ
vh

F
ra

ct
io

n 
of

 e
xp

os
ed

 h
um

an
s:

 e
h

Stable Equilibrium Points
Unstable Equilibrium Points

Figure 4.1: Two bifurcation diagrams for (2.12) showing only the endemic equi-
librium points. The top curve (labeled δh = 3.45392 × 10−4) is for parameter
values described in Table 4.1. The bottom curve (labeled δh = 3.41938× 10−5)
has the same parameters as the first curve, except for δh. Only the equilib-
rium value of the fraction of exposed humans, eh, is shown on the y-axis. The
bifurcations are explained in more detail in the text.

(R0 = 0.9543). Thus a locally asymptotically stable endemic equilibrium is
possible for values of R0 below 1. Though we do not show the plots here, further
bifurcation analysis has shown that even as σvh is increased to large levels, the
size of the projection of the endemic equilibrium on the fractional infected groups
increases monotonically, and the equilibrium point remains stable.

For comparison we show the bifurcation diagram with δh = 3.41938× 10−5.
Here, we only see a stable branch of endemic equilibrium points. There is a
supercritical (forward) bifurcation at σvh = 0.5559 (R0 = 1). There are no
endemic equilibrium points for R0 less than 1. Though we do not show the
plots here, further bifurcation analysis has shown, for these parameter values,
that even as σvh is increased to large levels, the size of the projection of the
endemic equilibrium on the fractional infected groups increases monotonically,
and the equilibrium point remains stable.
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Table 4.1: The values of parameters for which there exist positive
endemic equilibrium points when R0 < 1: R0 = 0.9690. The unit
of time is days.

Λh = 3.285× 10−2

ψh = 7.666× 10−5 ψv = 0.4000
βvh = 0.8333 βhv = 2.000× 10−2

β̃vh = 8.333× 10−3

σvh = 0.5600
νh = 8.333× 10−2 νv = 0.1000
γh = 3.704× 10−3

δh = 3.45392× 10−4

ρh = 1.460× 10−2

µ1h = 4.212× 10−5 µ1v = 0.1429
µ2h = 1.000× 10−7 µ2v = 2.279× 10−4

We now focus on an example with parameter values described in Table 4.1.
The reproductive number corresponding to these parameter values is R0 =
0.9690. Most of these parameter values are within the bounds of a realistically
feasible range, with the exception of the mosquito birth rate which has been
significantly increased to lower the value of the reproductive number below 1.
The value of δh corresponds to a death rate of 12.62% of infected humans per
year. We numerically2 find four equilibrium points: two on the boundary of,
and two in, the positive cone of R7. The two equilibrium points on the boundary
are the mosquito-free equilibrium point, xmfe, Nh = 771.3. and the disease-free
equilibrium point, xdfe. The two equilibrium points inside the positive cone
are two endemic equilibrium points. Linear stability analysis shows that the
“larger” endemic equilibrium point is locally asymptotically stable, while the
“smaller” point is unstable. Further linear analysis with an increased value of
σvh = 0.6 and all other parameters as in Table 4.1 (with R0 = 1.038) shows
that there is one stable endemic equilibrium point.

Figure 4.2 shows simulations of the original unscaled equations (2.1) for
parameter values in Table 4.1. These plots illustrate the stability of the “larger”
endemic equilibrium in the presence of a stable disease-free equilibrium point.

5 Summary and Conclusions

In this paper, we analyzed a 7-dimensional ODE model for the transmission
of malaria, with 4 variables for humans and 3 variables for mosquitoes. We
showed that there exists a domain where the model is epidemiologically and
mathematically well-posed.

For this model, we were able to show the existence of two equilibrium points
with no disease: one with only humans and no mosquitoes, xmfe, and one with

2The numerical solutions to the equilibrium equations were found using the NSolve com-
mand in Mathematica.
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Figure 4.2: A numerical simulation of the malaria model (2.1) (using the orig-
inal system variables before normalization) with parameter values defined in
Table 4.1. These parameters correspond to R0 = 0.969. The initial conditions
used were Sh = 300, Eh = 10, Ih = 30, Rh = 0, Sv = 1000, Ev = 100 and
Iv = 50; which correspond to eh = 0.0294, ih = 0.0882, rh = 0, Nh = 340,
ev = 0.0870, iv = 0.0435 and Nv = 1150. The system approaches an endemic
equilibrium point. We thus have a stable endemic equilibrium for R0 < 1. The
simulations were conducted using MATLAB’s ode45 — a variable order Runge-
Kutta method — with a relative tolerance of 10−5 and an absolute tolerance of
10−7.

both humans and mosquitoes, xdfe. The equilibrium point with no mosquitoes,
xmfe, is locally asymptotically stable if the mosquito birth rate, ψv, is lesser
than the mosquito death rate, µ1v.

We defined a reproductive number, R0 that is epidemiologically accurate
in that it provides the expected number of new infections (in mosquitoes or
humans) from one infectious individual (human or mosquito) over the duration
of the infectious period given that all other members of the population are
susceptible. We showed that, provided the mosquito birth rate is greater than
the mosquito death rate, if R0 < 1, then the disease-free equilibrium point, xdfe,
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is locally asymptotically stable and if R0 > 1, then xdfe is unstable.
We also proved that an endemic equilibrium point exists for all R0 > 1 with a

transcritical bifurcation at R0 = 1. The analysis and the numerical simulations
showed that for δh = 0, and for some small positive values of δh, there is a
supercritical (forward) transcritical bifurcation at R0 = 1 with an exchange of
stability between the disease-free equilibrium and the endemic equilibrium as
shown in Figure 5.1(a). For larger values of δh, there is a subcritical (backward)
transcritical bifurcation at R0 = 1, with an exchange of stability between the
endemic equilibrium and the disease free equilibrium; and there is a saddle-
node bifurcation at R0 = R∗0 for some R∗0 < 1. A schematic of this bifurcation
diagram is shown in Figure 5.1(b).

While we do not have any analytical results on the stability of the endemic
equilibrium for large values of R0, the numerical results suggest that the equi-
librium is stable. However, it follows from Theorem 2.1 that all orbits of the
system of equations (2.12) are bounded. Thus, if the endemic equilibrium were
to lose stability, then there would exist a nonequilibrium attractor (such as a
limit cycle or strange attractor), though for this model we have no evidence for
nonequilibrium attractors.

The possible existence of a subcritical (backward) bifurcation at R0 = 1 and
a saddle-node bifurcation at some R∗0 < 1, as shown in Figure 5.1(b), can have
strong implications for public health. Simply reducing R0 to a value below 1
is not always sufficient to eradicate the disease; it is now necessary to reduce
R0 to a value less than R∗0 to ensure that there is no endemic equilibrium. The
existence of a saddle-node bifurcation also implies that in some areas with en-
demic malaria, it may be possible to significantly reduce prevalence or eradicate
the disease with small increases in control programs (a small reduction in R0

so that it is less than R∗0). Note that it may also be possible in some areas
where malaria has been eradicated, for a slight disruption, like a change in envi-
ronmental or control variables or an influx of infectious humans or mosquitoes,
for the disease to reestablish itself in the population with a significant increase
in the prevalence rate (increasing R0 above R∗0 or moving the system into the
basin of attraction of the endemic equilibrium).

The possibility of a subcritical (backward) bifurcation in our model is also a
significant difference from the model of Ngwa and Shu [21], as that model only
exhibited a supercritical (forward) bifurcation at R0 = 1.

In future papers, we plan to conduct several studies of the model presented
here. These studies will include a sensitivity analysis on the reproductive num-
ber and the endemic equilibrium. As we have an explicit expression for R0, we
can analytically evaluate its sensitivity to the different parameter values. We
also wish to numerically evaluate the sensitivity of the endemic equilibrium to
the parameter values. This will allow us to compare different control strategies
in various parts of the world for efficiency and effectiveness in reducing malaria
mortality and morbidity.

We also plan to study the effects of the environment on the spread of malaria.
Mosquito populations depend heavily on environmental factors such as rainfall,
temperature and humidity. These factors typically vary periodically. We want
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ues of δh. We have proved the stability of the
disease-free equilibrium point (locally asymp-
totically stable for R0 < 1 and unstable for
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equilibrium point for all R0 > 1. We have
also proved that the bifurcation is supercriti-
cal when δh = 0. Numerical simulations sug-
gest that the endemic equilibrium is stable for
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(b) A subcritical bifurcation for large values
of δh. We have proved the stability of the
disease-free equilibrium point (locally asymp-
totically stable for R0 < 1 and unstable for
R0 > 1) and the existence of the endemic
equilibrium point for all R0 > 1. Numerical
simulations show that for some values of δh,
when R0 < 1, there exist two endemic equi-
librium points, the smaller of which is unsta-
ble while the larger is locally asymptotically
stable. For the same δh, as ζ (σvh) is de-
creased, the two endemic equilibrium points
disappear; and as ζ is increased to a corre-
sponding value of R0 greater than 1, there is
only one stable endemic equilibrium. The re-
sults show a subcritical bifurcation at R0 = 1
and a saddle-node bifurcation at R0 = R∗0 for
some R∗0 < 1 (dependent on the parameter
values). We have no analytical results for the
stability of the endemic equilibrium as R0 ap-
proaches ∞.

Figure 5.1: Schematics of the two possible bifurcation scenarios for different
values of δh for the constant parameter malaria model (2.12). It is important
to note that this figure is a cartoon, which summarizes the results for the bifur-
cation, and not an actual numerical study of the bifurcation.

to incorporate these effects by analyzing the original malaria model with selected
periodic coefficients, such as the mosquito birth rate. We would like to explore
this periodically forced model for features not seen in the autonomous model,
including appropriate adaptions to the definition of the reproductive number
and the endemic states. This should provide a more accurate picture of the
malaria epidemics than that obtained from models using parameter values that
are averaged over the seasons.

An ultimate goal is to validate this model by applying it to particular areas
in the world infected with malaria. We will compare predicted endemic states
obtained from the model using estimated parameter values from a given location
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to the actual prevalence data in that location.

A Lemmas and Proofs of Theorems

Lemma A.1 For all equilibrium points on D ∩ ∂R7, eh = ih = rh = ev = iv =
0.

Proof We need to show that for an equilibrium point in D, if any one of diseased
classes is zero, all the rest are also equal to zero. For ease of notation, we write
the statements below.

(H1): eh = 0.
(H2): ih = 0.
(H3): rh = 0.
(H4): ev = 0.
(H5): iv = 0.
(H6): (H1) and (H2) and (H3).
(H7): (H4) and (H5).

We show by setting the right hand side of (2.12) equal to 0, that if any one
of the above statements is true, all the others are true. For i′h = 0, (H1) is true
if and only if (H2) is true3. Similarly, for r′h = 0, (H2) is true if and only if
(H3) is true. Thus, if any one of (H1), (H2) or (H3) is true, (H6) is true. From
e′h = 0, we see that if (H6) is true, then (H5) is true. Also, for i′v = 0, (H4) is
true if and only if (H5) is true. Thus, if either one of (H4) or (H5) is true, then
(H7) is true. Finally, for e′v = 0, if (H7) is true, then both (H2) and (H3) are
true. ¤

A.1 Proof of Theorem 3.3

Proof of Theorem 3.3 The Jacobian evaluated at xdfe (3.2) is of the form:

J =




J11 0 0 0 0 J16 0
J21 J22 0 0 0 0 0
0 J32 J33 0 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 0 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77




. (A.1)

As the fourth and seventh columns (corresponding to the total human and
mosquito populations) contain only the diagonal terms, these diagonal terms

3As the right-hand side of (2.12b) is a quadratic function of ih, there are 2 possible solutions
of ih when i′h = 0 and eh = 0. However, the nonzero solution of ih is greater than 1 and thus
outside of D.
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form two eigenvalues of the Jacobian:

η6 = ψh − µ1h − 2µ2hN∗
h (A.2a)

= −
√

(ψh − µ1h)2 + 4µ2hΛh

η7 = ψv − µ1v − 2µ2vN∗
v (A.2b)

= −(ψv − µ1v).

The other 5 eigenvalues are the roots of the characteristic equation of the matrix
formed by excluding the 4th and 7th rows and columns of the Jacobian (A.1):

A5η
5 + A4η

4 + A3η
3 + A2η

2 + A1η + A0 = 0 (A.3)

with

A5 = 1 (A.4a)
A4 = B1 + B2 + B3 + B4 + B5 (A.4b)
A3 = B1B2 + B1B3 + B1B4 + B1B5 + B2B3 + B2B4 + B2B5 (A.4c)

+B3B4 + B3B5 + B4B5

A2 = B1B2B3 + B1B2B4 + B1B2B5 + B1B3B4 + B1B3B5 + (A.4d)
B1B4B5 + B2B3B4 + B2B3B5 + B2B4B5 + B3B4B5

A1 = B1B2B3B4 + B1B2B3B5 + B1B2B4B5 + B1B3B4B5 + (A.4e)
B2B3B4B5 −B6B7B8B9

A0 = B1B2B3B4B5 − (B3B6B7B8B9 + B6B7B9B10B11) (A.4f)

and

B1 = νh + ψh + Λh/N∗
h (A.5a)

= νh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B2 = γh + δh + ψh + Λh/N∗
h (A.5b)

= γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B3 = ρh + ψh + Λh/N∗
h (A.5c)

= ρh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B4 = νv + ψv (A.5d)
B5 = ψv (A.5e)
B6 = σvhβhvN∗

v /N∗
h (A.5f)

B7 = νh (A.5g)
B8 = σvhβvh (A.5h)
B9 = νv (A.5i)

B10 = γh (A.5j)
B11 = σvhβ̃vh. (A.5k)
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In a similar manner to [21], we show the stability of the disease-free equilibrium
changes as R0 passes through 1 by using Descartes’ Rule of Sign. Korn and
Korn [16] in §1.6-6(c) state Descartes’ Rule of Sign as: the number of positive
real roots of a real algebraic equation (A.6)

anxn + an−1x
n−1 + . . . + a1x + a0 = 0 (A.6)

is equal to the number, Na, of sign changes in the sequence, an, an−1, . . . , a0, of
coefficients, where the vanishing terms are disregarded, or it is less than Na by
a positive even integer. We show that when R0 < 1, all the coefficients of the
characteristic equation (A.3) are positive, so all the eigenvalues of the Jacobian
(A.1) have negative real part. We then show that when R0 > 1, there is one sign
change in the sequence A5, A4, . . . , A0, so there is one eigenvalue with positive
real part and the disease free equilibrium point is unstable.

As all the Bi are positive, A5, A4, A3 and A2 are all positive. We will now
show that when R0 < 1, both A1 and A0 are positive. We will then show that
when R0 > 1, A0 is negative. Thus, when R0 < 1, all the coefficients of the
characteristic equation (A.3) are positive, and when R0 > 1, there is only one
change in sign when the coefficients are arranged as in Descartes’ Rule of Sign.

When R0 is less (greater) than 1, R2
0 is also less (greater) than 1 since R0 is

strictly positive. The expression for R2
0 (3.6) can be written, in terms of Bi, as

R2
0 =

B3B6B7B8B9 + B6B7B9B10B11

B1B2B3B4B5
. (A.7)

Thus for R0 < 1,
B3B6B7B8B9

B1B2B3B4B5
< 1

so
B6B7B8B9 < B1B2B4B5

and as all other terms in A1 are positive, A1 > 0. R0 < 1 also implies that

B3B6B7B8B9 + B6B7B9B10B11 < B1B2B3B4B5

and thus A0 > 0.
Similarly, when R0 > 1

B3B6B7B8B9 + B6B7B9B10B11 > B1B2B3B4B5

and A0 < 0. Note that the Jacobian of the disease-free equilibrium (3.2) has
one eigenvalue equal to 0 at R0 = 1.

Thus, we can say that the disease free-equilibrium point, xdfe, is locally
asymptotically stable if R0 < 1 (the disease will not spread) and ψv > µ1h (the
mosquitoes will not become extinct); and unstable if R0 > 1, or if ψv < µ1h. ¤
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A.2 Proof of Theorem 4.1

Proof of Theorem 4.1 The equilibrium equations for (2.12) are shown below
in (A.8). For the remainder of this section, §4 and Appendix A.2, we will use
the terms, eh, ih, rh, Nh, ev, iv and Nv to represent their respective equilibrium
values and not their actual values at a given time, t.

σvhβhv
Nv

Nh
iv(1− eh − ih − rh)−

(νh + ψh + Λh/Nh)eh + δhiheh = 0 (A.8a)
νheh − (γh + δh + ψh + Λh/Nh)ih + δhi2h = 0 (A.8b)

γhih − (ρh + ψh + Λh/Nh)rh + δhihrh = 0 (A.8c)
Λh + ψhNh − (µ1h + µ2hNh)Nh − δhihNh = 0 (A.8d)

σvh

(
βvhih + β̃vhrh

)
(1− ev − iv)− (νv + ψv)ev = 0 (A.8e)

νvev − (ψv)iv = 0 (A.8f)
ψvNv − (µ1v + µ2vNv)Nv = 0 (A.8g)

We do not attempt to rewrite the entire system (A.8) in the form of (4.1), but
reduce the equilibrium equations to a two-dimensional system for eh and ev.4

We do so by solving for the other variables, either explicitly as functions of the
parameters, or in terms of eh and ev.

We solve (A.8g) for Nv, explicitly expressing the positive equilibrium for the
total mosquito population in terms of parameters (exactly as in the disease-free
case (3.3b)).

Nv =
ψv − µ1v

µ2v
(A.9)

Solving for iv in (A.8f) in terms of ev we find:

iv =
νv

ψv
ev. (A.10)

Similarly, we write the positive equilibrium for the total human population, Nh,
in terms of ih from (A.8d) as

Nh =
(ψh − µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

2µ2h
. (A.11)

Using (A.11) in (A.8c), we solve for rh in terms of ih.

rh =
2γhih

2ρh + (ψh + µ1h − δhih) +
√

(ψh − µ1h − δhih)2 + 4µ2hΛh

(A.12)

Given the nonlinear nature of (A.8b), it is not feasible (or useful) to solve for
ih in terms of eh explicitly. We therefore use (A.11) to rewrite (A.8b) as

f(eh, ih) = 0 (A.13)
4This also better serves our purposes as the theorem by Rabinowitz requires a bifurcation

from the zero equilibrium point; and Nh and Nv have positive equilibrium values.
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where

f(eh, ih) = νheh − (A.14)[
γh + δh + 1

2

(
(ψh + µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

)]
ih

and use the Implicit Function Theorem (Korn and Korn [16], §4.5-7) to approx-
imate (A.13) by a Taylor polynomial for ih as a function of eh. The partial
derivatives of f(eh, ih) are

∂f

∂eh
(eh, ih) = νh (A.15)

∂f

∂ih
(eh, ih) =

1
2
δh

[
ih +

ψh − µ1h − δhih√
(ψh − µ1h − δhih)2 + 4Λhµ2h

]
ih (A.16)

−
[
γh + δh + 1

2

(
(ψh + µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

)]

As f(eh, ih) and its partial derivatives with respect to eh and ih exist, and are
continuous in a neighbourhood of (0, 0); and ∂f

∂ih
is nonzero at ih = 0; there

exists a unique differentiable function

ih = y(eh)

around ih = 0 and eh = 0 that is equivalent to (A.13). We approximate this
function with a Taylor polynomial of the form

ih = y1eh + y2e
2
h + . . . (A.17)

where

y1 = −
∂f
∂eh

∂f
∂ih

∣∣∣∣∣
ih=eh=0

and

y2 = − 1(
∂f
∂ih

)3 ×

[(
∂2f

∂e2
h

) (
∂f

∂ih

)2

− 2
(

∂2f

∂eh∂ih

)(
∂f

∂eh

)(
∂f

∂ih

)
+

(
∂2f

∂i2h

)(
∂f

∂eh

)2
]∣∣∣∣∣

ih=eh=0

.

An evaluation of these expressions provides:

y1 =
νh

γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) (A.18)

and

y2 =
1√

(ψh − µ1h)2 + 4µ2hΛh

× (A.19)

δhν2
h(ψh − µ1h)[

γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)]3 .
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Finally, we substitute the Taylor approximation for ih (A.17) into rh (A.12)
and Nh (A.11), and then all three, along with iv (A.10) and Nv (A.9) into
the equilibrium equations for eh (A.8a) and ev (A.8e), to provide second order
approximations to the equilibrium equations

0 = f1 10eh + f1 01ev + f1 11ehev + f1 20e
2
h + f1 02e

2
v +O(u3)(A.20a)

0 = f2 10eh + f2 01ev + f2 11ehev + f2 20e
2
h + f2 02e

2
v +O(u3)(A.20b)

where

u =
(

eh

ev

)
(A.21)

and

f1 10 = −
[
νh + 1

2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)]
(A.22a)

f1 01 = σvh
2µ2hνvβhv(ψv − µ1v)

ψvµ2v

(
(ψh − µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) (A.22b)

f2 10 = σvh
νh

γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)(A.22c)

×

βvh +

γhβ̃vh

ρh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)



f2 01 = − (ψv + νv) . (A.22d)

Although we have expressions for the coefficients of the second order terms, we
do not explicitly show them here as they are lengthy and not needed for our
purposes.

To apply Theorem 1.3 of Rabinowitz [22], we factor out ζ = σvh, after some
algebraic manipulations on (A.20), to produce

(
eh

ev

)
= ζ

(
0 A
B 0

)(
eh

ev

)
+O

((
eh

ev

))2

(A.23)

or
u = ζLu + h(ζ, u) (A.24)

where

L =
(

0 A
B 0

)
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with

A =
1

νh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) × (A.25a)

2µ2hνvβhv(ψv − µ1v)

ψvµ2v

(
(ψh − µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B =


βvh +

γhβ̃vh

ρh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

×(A.25b)

νh

(ψv + νv)
(
γh + δh + 1

2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)) .

The matrix, L, has 2 distinct eigenvalues: ±√AB. Characteristic values of
a matrix are the reciprocals of its eigenvalues. For the matrix, L, we denote
the two characteristic values by ξ1 = 1/

√
AB and ξ2 = −1/

√
AB. The right

eigenvector corresponding to the characteristic value, ξ1 is

v =
( √

A√
B

)
. (A.26)

We note here that B is always positive and A is positive if and only if ψv > µ1v.
Thus ξ1 is real and corresponds to the dominant eigenvalue of L if and only if
ψv > µ1v. We require this condition for the existence of the endemic equilibrium
because otherwise the mosquito death rate would be greater than the mosquito
birth rate so the positive equilibrium for the total mosquito population would
be unstable; and the mosquito population would asymptotically approach zero.

By Theorem 1.3 of Rabinowitz [22], we know that there is a continuum of
solution pairs (ζ, u) ∈ Ω, whose closure contains the point (ξ1, 0), that either
meets ∞ (is unbounded) or the point (ξ2, 0). We denote the continuum of
solution pairs emanating from (ξ1, 0) by C1 where C1 ⊂ Ω; and from (ξ2, 0) by
C2 where C2 ⊂ Ω. We introduce the sets

Z1 = {ζ ∈ R| ∃u such that (ζ, u) ∈ C1} (A.27a)
U1 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C1} (A.27b)
Z2 = {ζ ∈ R| ∃u such that (ζ, u) ∈ C2} (A.27c)
U2 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C2} . (A.27d)

We denote the positive cone in Y , {(eh, ev)|eh > 0 and ev > 0}, by Y +; and the
boundary of Y + by ∂Y +.

As shown in Lemma A.4, the initial direction of Ui, the projection of the
continuum of solution pairs Ci in Y , near the bifurcation point (ξi, 0) , is given by
the eigenvector corresponding to the characteristic value, ξi — where i is either
1 or 2. Additionally, from Lemma A.1, there are no equilibrium points on ∂Y +

other than eh = ev = 0, so U1 ∩ ∂Y + = (0, 0) and U2 ∩ ∂Y + = (0, 0); and hence
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U1 and U2 cannot pass through ∂Y +. The eigenvector, v (A.26), corresponding
to ξ1 contains only positive terms, while the eigenvector corresponding to ξ2

is ( −√A
√

B )T; thus U1 enters and cannot leave Y + while U2 is always
outside Y +. As U1 and U2 cannot meet, C1 and C2 do not intersect and by the
Theorem of Rabinowitz, C1 meets ∞ (is unbounded).

By Lemma A.2, the set U1 is bounded for all finite positive ζ, so C1 only
meets ∞ at ζ = ∞. By Lemma A.3, for every u ∈ U1, there corresponds at least
one x∗ in the positive cone of R7, except for u = (0, 0) which corresponds to xdfe

(on the boundary of the positive cone of R7). Thus, there exists a continuum
of equilibrium-pairs (ζ, x∗) ∈ {R× R7} that connects the point (ξ1, xdfe) to ∞
in such a way that the ζ component is unbounded.

Lemma A.2 The set, U1, is bounded for all finite ζ.

Proof It suffices to show that the eh and ev values of the ω-limit set of the
solutions of (2.12) are bounded above by 1. As eh and ev are positive (because
U1 is in Y +), by Lemma A.3, all other state variables are also positive. Thus
we see from (2.12a) that if eh > 1, then e′h < 0; and similarly from (2.12e) we
see that if if ev > 1, then e′v < 0. Thus the endemic equilibrium point(s) is
contained in a bounded region for all finite ζ. ¤

Lemma A.3 The point u = (0, 0) ∈ Y corresponds to xdfe ∈ R7 (on the bound-
ary of the positive cone of R7). For every other solution pair (ζ, u) ∈ C1, there
corresponds at least one equilibrium pair (ζ, x∗) ∈ {R× R7} where x∗ is in the
positive cone of R7.

Proof We first show that u = (0, 0) corresponds to xdfe. As eh = ev = 0, by
Theorem 3.1 we know that the only 2 possible equilibrium points are xmfe and
xdfe. As we picked the positive mosquito equilibrium population in solving for
Nv (A.9), the equilibrium point that we bifurcate from is xdfe.

We now show that for every ζ ∈ Z1 there exists at least one x∗ in the positive
cone of R7 for the corresponding u ∈ U1. For this, we need to show that for
every positive and bounded eh and ev, there exist positive and bounded ih, rh,
iv, Nh and Nv. By looking at the equilibrium equation for iv (A.10), we see
that for every positive and bounded ev there exists a positive and bounded iv.
The equilibrium equation for Nv has a positive and bounded solution depending
only on parameter values (A.9). The equilibrium equation for ih (A.13) may be
written as

eh =
γh + δh + 1

2

(
(ψh + µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

)

νh
ih.

(A.28)
The right-hand side of (A.28) is a continuous function of ih with range [0,∞)
so for every positive and bounded eh, there exists at least one positive and
bounded ih. The equilibrium equations for rh (A.12) and Nh (A.11) show that
for every positive and bounded ih there exists a positive and bounded rh and
Nh, respectively. ¤
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A.3 Proof of Theorem 4.3

Evaluating the substitution of the expansions (4.3) into the eigenvalue equation
(A.24) at O(ε0) produces 0 = 0 which gives us no information. We need to
calculate the O(ε1) terms.

Lemma A.4 The initial direction of the branch of equilibrium points, u(1) near
the bifurcation point (ξ1, 0), is equal to the eigenvector of L corresponding to the
characteristic value, ξ1.

Proof Evaluating the substitution of the expansions (4.3) into the eigenvalue
equation (A.24) at O(ε1) we obtain:

u(1) = ξ1Lu(1).

This implies that u(1) is the eigenvector of L corresponding to the eigenvalue
1/ξ1, v (A.26). Thus, close to the bifurcation point, the equilibrium point can
be approximated by eh = ε

√
A and ev = ε

√
B. ¤

Lemma A.5 The bifurcation at ζ = ξ1 of the nonlinear eigenvalue equation
(A.24) is supercritical if ζ1 > 0 and subcritical if ζ1 < 0 where

ζ1 = −w · h2

w · Lv
(A.29)

where v is the right eigenvector of L and w is the left eigenvector of L corre-
sponding to the eigenvalue 1/ξ1.

Proof Evaluating the substitution of the expansions (4.3) into the eigenvalue
equation (A.24) at O(ε2) we obtain:

u(2) = ξ1Lu(2) + ζ1Lu(1) + h2

which we can rewrite as

(I− ξ1L)u(2) = ζ1Lv + h2 (A.30)

where I is the 2×2 identity matrix. As ξ1 is a characteristic value of L, (I−ξ1L)
is a singular matrix. Thus, for (A.30) to have a solution, ζ1Lv + h2 must be in
the range of (I− ξ1L), ie. it must be orthogonal to the null space of the adjoint
of (I − ξ1L). The null space of the adjoint of (I − ξ1L) is spanned by the left
eigenvector of L (corresponding to the eigenvalue 1/ξ1), which we denote by
w :=

( √
B

√
A

)
. The Fredholm condition for the solvability of (A.30) gives

us
w · (ζ1Lv + h2) = 0.

This requires

ζ1 = −w · h2

w · Lv
.

If ζ1 is positive, then for small positive ε, u > 0 and ζ > ξ1 and we have a
supercritical (forward) bifurcation. Similarly, if ζ1 is negative, then for small
positive ε, u > 0 and ζ < ξ1 and we have a subcritical (backward) bifurcation.
¤
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Proof of Theorem 4.3 When δh = 0, we can explicitly evaluate h(ζ, u) in the
nonlinear eigenvalue equation (A.24) from the equilibrium equations (A.20) as

h = ζ

(
C(δh=0)ehev

D(δh=0)ehev

)
(A.31)

since the coefficients of all the other higher order terms are zero. We have
explicit representations for C(δh=0) and D(δh=0), but we do show them here. It
suffices to say that both C(δh=0) and D(δh=0) are negative. From (A.31) and
(4.3) we can evaluate the second order expansion, h2.

h2 = ξ1

(
C(δh=0)

√
A
√

B

D(δh=0)

√
A
√

B

)

=
(

C(δh=0)

D(δh=0)

)
(A.32)

As h2 contains only negative terms and w, v and L contain only nonnega-
tive terms, (A.29) implies that ζ1 is positive. Thus, by Lemma A.5, with no
disease-induced death, for any positive values of the other parameters there is
a supercritical (forward) bifurcation at R0 = 1. ¤
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[11] H. Gómez-Acevedo and M. Y. Li, Backward bifurcation in a model for
HTLV-I infection of CD4+ T cells, Bulletin of Mathematical Biology, 67
(2005), pp. 101–114.

[12] J. M. Hyman and J. Li, An intuitive formulation for the reproduc-
tive number for the spread of diseases in heterogeneous populations, Math.
Biosci., 167 (2000), pp. 65–86.

[13] J. C. Koella, On the use of mathematical models of malaria transmission,
Acta Tropica, 49 (1991), pp. 1–25.

[14] J. C. Koella and R. Antia, Epidemiological models for the spread of
anti-malarial resistance, Malaria Journal, 2 (2003).
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